Skip to main content

5 machine learning applications

Artificial Intelligence (AI) is everywhere. Possibility is that you are using it in one way or the other and you don’t even know about it. One of the popular applications of AI is Machine Learning (ML), in which computers, software, and devices perform via cognition (very similar to human brain). Herein, we share few examples of machine learning that we use everyday and perhaps have no idea that they are driven by ML.
1. Virtual Personal Assistants
Siri, Alexa, Google Now are some of the popular examples of virtual personal assistants. As the name suggests, they assist in finding information, when asked over voice. All you need to do is activate them and ask “What is my schedule for today?”, “What are the flights from Germany to London”, or similar questions. For answering, your personal assistant looks out for the information, recalls your related queries, or send a command to other resources (like phone apps) to collect info. You can even instruct assistants for certain tasks like “Set an alarm for 6 AM next morning”, “Remind me to visit Visa Office day after tomorrow”.
Machine learning is an important part of these personal assistants as they collect and refine the information on the basis of your previous involvement with them. Later, this set of data is utilized to render results that are tailored to your preferences.
Virtual Assistants are integrated to a variety of platforms. For example:
  • Smart Speakers: Amazon Echo and Google Home
  • Smartphones: Samsung Bixby on Samsung S8
  • Mobile Apps: Google Allo
2. Predictions while Commuting
Traffic Predictions: We all have been using GPS navigation services. While we do that, our current locations and velocities are being saved at a central server for managing traffic. This data is then used to build a map of current traffic. While this helps in preventing the traffic and does congestion analysis, the underlying problem is that there are less number of cars that are equipped with GPS. Machine learning in such scenarios helps to estimate the regions where congestion can be found on the basis of daily experiences.
Online Transportation Networks: When booking a cab, the app estimates the price of the ride. When sharing these services, how do they minimize the detours? The answer is machine learning. Jeff Schneider, the engineering lead at Uber ATC reveals in a an interview that they use ML to define price surge hours by predicting the rider demand. In the entire cycle of the services, ML is playing a major role.
3. Videos Surveillance
Imagine a single person monitoring multiple video cameras! Certainly, a difficult job to do and boring as well. This is why the idea of training computers to do this job makes sense.
The video surveillance system nowadays are powered by AI that makes it possible to detect crime before they happen. They track unusual behaviour of people like standing motionless for a long time, stumbling, or napping on benches etc. The system can thus give an alert to human attendants, which can ultimately help to avoid mishaps. And when such activities are reported and counted to be true, they help to improve the surveillance services. This happens with machine learning doing its job at the backend.
4. Social Media Services
From personalizing your news feed to better ads targeting, social media platforms are utilizing machine learning for their own and user benefits. Here are a few examples that you must be noticing, using, and loving in your social media accounts, without realizing that these wonderful features are nothing but the applications of ML.
  • People You May Know: Machine learning works on a simple concept: understanding with experiences. Facebook continuously notices the friends that you connect with, the profiles that you visit very often, your interests, workplace, or a group that you share with someone etc. On the basis of continuous learning, a list of Facebook users are suggested that you can become friends with.
  • Face Recognition: You upload a picture of you with a friend and Facebook instantly recognizes that friend. Facebook checks the poses and projections in the picture, notice the unique features, and then match them with the people in your friend list. The entire process at the backend is complicated and takes care of the precision factor but seems to be a simple application of ML at the front end.
  • Similar Pins: Machine learning is the core element of Computer Vision, which is a technique to extract useful information from images and videos. Pinterest uses computer vision to identify the objects (or pins) in the images and recommend similar pins accordingly.
5. Email Spam and Malware Filtering
  • There are a number of spam filtering approaches that email clients use. To ascertain that these spam filters are continuously updated, they are powered by machine learning. When rule-based spam filtering is done, it fails to track the latest tricks adopted by spammers. Multi Layer Perceptron, C 4.5 Decision Tree Induction are some of the spam filtering techniques that are powered by ML.
  • Over 325, 000 malwares are detected everyday and each piece of code is 90–98% similar to its previous versions. The system security programs that are powered by machine learning understand the coding pattern. Therefore, they detects new malware with 2–10% variation easily and offer protection against them.

Comments

Popular posts from this blog

What is Artificial Intelligence,its type and applications

AI is a part of Computer Science.AI is anything that makes machine more intelligent. AI is a technology which can not replace human intelligence but rather it can extend human capabilities.Now a days AI is most wanted and powerful technology.Every industry wants to have its AI system because it can process very large amount of data in less time. How does AI learn ? The intelligence which machine having is only provided by us.So basically we provide to machine  ability to examine and create machine learning models based on inputs and desired output and we do this based on supervised learning,unsupervised learning and reinforcement learning. Types of AI based on Strength Weak or Narrow AI- Narrow AI is that applied on specific domain.It can perform specific task but can not learn new things its own.It can only make decision based on programmed algorithms and trained data.For example AI powered based searches,virtual assistant,self driving cars,language translato...

ANN in depth

Artificial Neural Network Layers Artificial Neural network is typically organized in layers. Layers are being made up of many interconnected ‘nodes’ which contain an  ‘activation function’.  A neural network may contain the following 3 layers: a. Input layer The purpose of the input layer is to receive as input the values of the explanatory attributes for each observation. Usually, the number of input nodes in an input layer is equal to the number of explanatory variables. ‘input layer’ presents the patterns to the network, which communicates to one or more ‘hidden layers’. The nodes of the input layer are passive, meaning they do not change the data. They receive a single value on their input and duplicate the value to their many outputs. From the input layer, it duplicates each value and sent to all the hidden nodes. b. Hidden layer The  Hidden layers  apply given transformations to the input values inside the network. In this, incoming arcs that go...