Skip to main content

The future of Artificial intelligence



THE FUTURE OF ARTIFICIAL INTELLIGENCE

Artificial intelligence is impacting the future of virtually every industry and every human being. Artificial intelligence has acted as the main driver of emerging technologies like big data, robotics and IoT, and it will continue to act as a technological innovator for the foreseeable future.

THE EVOLUTION OF AI

IFM is just one of countless AI innovators in a field that’s hotter than ever and getting more so all the time. Here’s a good indicator: Of the 9,100 patents received by IBM inventors in 2018, 1,600 (or nearly 18 percent) were AI-related. Here’s another: Tesla founder and tech titan Elon Musk recently donated $10 million to fund ongoing research at the non-profit research company OpenAI — a mere drop in the proverbial bucket if his $1 billion co-pledge in 2015 is any indication. And in 2017, Russian president Vladimir Putin told school children that “Whoever becomes the leader in this sphere [AI] will become the ruler of the world.” He then tossed his head back and laughed maniacally.
OK, that last thing is false. This, however, is not: After more than seven decades marked by hoopla and sporadic dormancy during a multi-wave evolutionary period that began with so-called “knowledge engineering,” progressed to model- and algorithm-based machine learning and is increasingly focused on perception, reasoning and generalization, AI has re-taken center stage as never before. And it won’t cede the spotlight anytime soon.

'HOW ROUTINE IS YOUR JOB?': NARROW AI'S IMPACT ON THE WORKFORCE 

During a lecture last fall at Northwestern University, AI guru Kai-Fu Lee championed AI technology and its forthcoming impact while also noting its side effects and limitations. Of the former, he warned:
“The bottom 90 percent, especially the bottom 50 percent of the world in terms of income or education, will be badly hurt with job displacement…The simple question to ask is, ‘How routine is a job?’ And that is how likely [it is] a job will be replaced by AI, because AI can, within the routine task, learn to optimize itself. And the more quantitative, the more objective the job is—separating things into bins, washing dishes, picking fruits and answering customer service calls—those are very much scripted tasks that are repetitive and routine in nature. In the matter of five, 10 or 15 years, they will be displaced by AI.”
In the warehouses of online giant and AI powerhouse Amazon, which buzz with more than 100,000 robots, picking and packing functions are still performed by humans — but that will change.
Lee’s opinion was recently echoed by Infosys president Mohit Joshi, who at this year’s Davos gathering told the New York Times, “People are looking to achieve very big numbers. Earlier they had incremental, 5 to 10 percent goals in reducing their workforce. Now they’re saying, ‘Why can’t we do it with 1 percent of the people we have?’”

Comments

Popular posts from this blog

ANN in depth

Artificial Neural Network Layers Artificial Neural network is typically organized in layers. Layers are being made up of many interconnected ‘nodes’ which contain an  ‘activation function’.  A neural network may contain the following 3 layers: a. Input layer The purpose of the input layer is to receive as input the values of the explanatory attributes for each observation. Usually, the number of input nodes in an input layer is equal to the number of explanatory variables. ‘input layer’ presents the patterns to the network, which communicates to one or more ‘hidden layers’. The nodes of the input layer are passive, meaning they do not change the data. They receive a single value on their input and duplicate the value to their many outputs. From the input layer, it duplicates each value and sent to all the hidden nodes. b. Hidden layer The  Hidden layers  apply given transformations to the input values inside the network. In this, incoming arcs that go...

5 machine learning applications

Artificial Intelligence (AI) is everywhere. Possibility is that you are using it in one way or the other and you don’t even know about it. One of the popular applications of AI is Machine Learning (ML), in which computers, software, and devices perform via cognition (very similar to human brain). Herein, we share few examples of machine learning that we use everyday and perhaps have no idea that they are driven by ML. 1. Virtual Personal Assistants Siri, Alexa, Google Now are some of the popular examples of virtual personal assistants. As the name suggests, they assist in finding information, when asked over voice. All you need to do is activate them and ask “What is my schedule for today?”, “What are the flights from Germany to London”, or similar questions. For answering, your personal assistant looks out for the information, recalls your related queries, or send a command to other resources (like phone apps) to collect info. You can even instruct assistants for certain tasks l...

What is nlp and computer vision

Some of the most common application areas of AI include natural language processing, speech, and computer vision. Now, let's look at each of these in turn. Humans have the most advanced method of communication which is known as natural language. While humans can use computers to send voice and text messages to each other, computers do not innately know how to process natural language. Natural language processing is a subset of artificial intelligence that enables computers to understand the meaning of human language. Natural language processing uses machine learning and deep learning algorithms to discern a word semantic meaning. It does this by deconstructing sentences grammatically, relationally, and structurally and understanding the context of use. For instance, based on the context of a conversation, NLP can determine if the word "Cloud" is a reference to cloud computing or the mass of condensed water vapor floating in the sky.  NLP systems might also be a...