Skip to main content

what is self driving car



A self-driving car (sometimes called an autonomous car or driverless car) is a vehicle that uses a combination of sensors, cameras, radar and artificial intelligence (AI) to travel between destinations without a human operator. To qualify as fully autonomous, a vehicle must be able to navigate without human intervention to a predetermined destination over roads that have not been adapted for its use.

Companies developing and/or testing autonomous cars include Audi, BMW, Ford, Google, General Motors, Tesla, Volkswagen and Volvo. Google's test involved a fleet of self-driving cars -- including Toyota Prii and an Audi TT -- navigating over 140,000 miles of California streets and highways.
AI technologies power self-driving car systems. Developers of self-driving cars use vast amounts of data from image recognition systems, along with machine learning and neural networks, to build systems that can drive autonomously.
The neural networks identify patterns in the data, which is fed to the machine learning algorithms. That data includes images from cameras on self-driving cars from which the neural network learns to identify traffic lights, trees, curbs, pedestrians, street signs and other parts of any given driving environment.
For example, Google's self-driving car project, called Waymo, uses a mix of sensors, Lidar (light detection and ranging -- a technology similar to radar) and cameras and combines all of the data those systems generate to identify everything around the vehicle and predict what those objects might do next. This happens in fractions of a second. Maturity is important for these systems. The more the system drives, the more data it can incorporate into its deep learning algorithms, enabling it to make more nuanced driving choices.

Comments

Popular posts from this blog

ANN in depth

Artificial Neural Network Layers Artificial Neural network is typically organized in layers. Layers are being made up of many interconnected ‘nodes’ which contain an  ‘activation function’.  A neural network may contain the following 3 layers: a. Input layer The purpose of the input layer is to receive as input the values of the explanatory attributes for each observation. Usually, the number of input nodes in an input layer is equal to the number of explanatory variables. ‘input layer’ presents the patterns to the network, which communicates to one or more ‘hidden layers’. The nodes of the input layer are passive, meaning they do not change the data. They receive a single value on their input and duplicate the value to their many outputs. From the input layer, it duplicates each value and sent to all the hidden nodes. b. Hidden layer The  Hidden layers  apply given transformations to the input values inside the network. In this, incoming arcs that go...

Can AI be dangerous

CAN AI BE DANGEROUS? Most researchers agree that a superintelligent AI is unlikely to exhibit human emotions like love or hate, and that there is no reason to expect AI to become intentionally benevolent or malevolent.  Instead, when considering how AI might become a risk, experts think two scenarios most likely: The AI is programmed to do something devastating:   Autonomous weapons are artificial intelligence systems that are programmed to kill. In the hands of the wrong person, these weapons could easily cause mass casualties. Moreover, an AI arms race could inadvertently lead to an AI war that also results in mass casualties. To avoid being thwarted by the enemy, these weapons would be designed to be extremely difficult to simply “turn off,” so humans could plausibly lose control of such a situation. This risk is one that’s present even with narrow AI, but grows as levels of AI intelligence and autonomy increase. The AI is programm...

What is ANN and CNN

An artificial neural network is a collection of smaller units called neurons, which are computing units modeled on the way the human brain processes information. Artificial neural networks borrow some ideas from the biological neural network of the brain, in order to approximate some of its processing results. These units or neurons take incoming data like the biological neural networks and learn to make decisions over time. Neural networks learn through a process called backpropagation. Backpropagation uses a set of training data that match known inputs to desired outputs. First, the inputs are plugged into the network and outputs are determined. Then, an error function determines how far the given output is from the desired output. Finally, adjustments are made in order to reduce errors. A collection of neurons is called a layer, and a layer takes in an input and provides an output. Any neural network will have one input layer and one output layer. It will also have one or more...